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INTRODUCTION

The use of composite materials h,as increased s(eadily during the past two dccadcs,  particulruly  for
aerospace, underwater and automotive structures. This is largely because many composite materials exhibit ‘“’
high strength-to-weight and stiffness-to-weight ratio,  which n)~c them ideally”suitd-  for use in wcight-
scnsitivc  structures. The ckastic properties of composite materials maybe significantly different in
specimens manufactured under the same general specifications ald may bc different for the bulk material
from those in the laminate. Moreover, the elastic properties of composites may v,ary as a result of aging,
environmental dcgrada[ion  and other effects (e.g., matrix cracking) resulting in overstress  and eventual
failure of the material. This variability in the properties requires a careful material characterization before
composites ,are used in a structure. Conventional destructive techniques for the determination of the elastic
st iffncss constants can bc cost] y and often inaecuratq  this is particularly true for the through-the-thicknes.s
properties. Nondcstructivc  determination of the clmtic  propcrti~s  allows the performance and reliability of
slructurc.

A systematic analytical method proposed by Mal et al [1], employing the leaky Lamb wave (LLW)
phenomenon, w,as found to bc an effcttive  method for the characterization of the elmtic  constants. The
model assumes that the composite cmsist  of transversely isotropic layers and the experiment requires the use
of water immersion or water injection through squirters for the tmnsmission  of the ultrasonic signals, This
requirement for water coupling hampers the field applicability of the method and also limits the number of
constants that can bc measured. P,articul,arly,  the constant c,, is difficult to dctcrminc  due to experimental
limitations. The application of a contact coupled guided wave method offers the potcn[ial  for a practical
nondcstruct  ivc ch,aracterii’.at  ion method.

The theoretical and experimental studies of guickxl wave I]ropagat ion in composites have grown
considerably in recent ye,ars [2, 3]. For a homogeneous composi[c  laminate with the symmetric axis parallel
to the surfacw (Fig. 1), there ,are two modes of propagation: symmetric and rmtisymmetric.  The lowest
symmetric (Extensional) and ant asymmetric (flexural) mocks arc the easiest to mcwrre  in an ultrasonic
experiment and their velocity value can be used to determine certain material const ants. German ct al [4]
have developed an ultrmonic tcchniquc  which is based on
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(a) Symmetric Mode (b) Antisyrnmetric  M o d e  “

Figure 1. Definition of the geomctricat  variables of the symmetric and antisymrnctric  guided wave modes.

contact type transducer-pair arrangement that can be used to determine the dispersion curves of the low
frequency ftcxural  mode, and the elastic properties. Unfortunately, the ftexurat wave signals are
mixed with reflected signals from the boundary if the lateral dimcmion  of the specimen is small in relation to
the wavelength or the struclure  geometry is complex. III this case, only the Extensional male can be
identified clc,arly.

A systematic parameter study(is  showing,that  the stiffness constants cl,, CD, Czq, and C55 have strong
influenee  on the dispersion curves for the lowest symmetric Extensional mode at low frequeney  range. In
Figure 2, the dispersion curve for the symmetric mode and wave propagation along the fiber direction is
plotted. In this Figure, the strong effect of varying c,, can be eaily observed. It] this reported study, a
detailed analysis of the low frequency symmetric guide waves was conducted and the results were
corroborated experiment all y.
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. . FORMULATION OF SYMMETRIC MODE DISPERSION CURVES

Generally, the dispersion equations for guided wave propagation in composite materials are very

,complicate and need to be solve numerically. The exact solution of dispersion curves for Lamb wave
propagation in orthotropic composite laminates has been derived by Mal [5], however the derived
equations are highly nonlinear and the numerical solution is computational intemive.  In the low frequency
range approximations can be made to simplify the solution for the lowest Extensional mode. A
unidirectional composite laminate is awmcd transversely isotropic with,, symmetric axis along the fiber
direction. The symmetry axis is defined as the xl-axis of the coordinate system and the stress-displacement
relations kgiven explicit] y in Ref. [51, wherec11, C12, C22,  C23t c55 am he five Uldepcndent red stiffnms  “
constants of the material. We also introduce five constmlts  q, u2, a3, ad ald as related to Cu ~ld tie  density Of
the material, p through

al =  c22/p, a2 =  C1,/P, a, = (c,z + c55)/p
(1)

a4 =  ( c2 2 -  c23)/zp, a5 =  C5S/p

The dispersion equation for the symmetric mode can bc expressed [5] as

AIcot((ph) + A2cot(C2@+ @t(C30h) = O (2)

When frequency times thickness is approaching zero, i.e QH - 0, then the dispersion equation becomes

This equalion  can bc factorized as

(b,  -  b2)(pv2-c55n;)(pv2  -  C,,n:)n(cv n,, n2) = o

‘(c? ‘t,> ~12) = (-C;ZC55 +  cl ICZZC55)11!

(-2 C;2C22  +  C11C;2  +  2C:2c23  -  c1 ,c:3 ‘2c,zc~~c55  +  2c]#

‘( C:ZC55
4

–  c;jc55)r1z -c c )n2+(--c;2 + c:+[(Cf2-cl]c22  22 55 1

(4)

~)erc fl)e e,quation ~Cij,  n,, nJ =0 represents the dispersion equation of the limit  of the bwCSt symmehic
m o d e .

a. For propagation along the symmetric axis (0’), the dispersion equation can bc simplified as

(pvz - c55)(c#2  + 4 - C11C22)  =  o

and solved (as

(5)

(6)
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where V, represents the spmd of the shear-horizontal SHO mode or quasi- transverse mode, and Vz represent’
the symmetric mode SO or quasi- kmgitudinal  mode. /

b. For propagation along the @$) direction perpendicular to the symmetric axis (9@), the equation can be
simplititx  as

(PV2 - C55)(C22PV2 - C;2 + C;3) = o

and solved explicitly as

For isotropic material, the solution can be reduced to the well know expression

(7)

.

(8)

(9)

Wroxintie Plate The&
For the low frequency range of guided wave propagation in composite laminates, various

approximation models were proposed [8]. It is well known that classical plate theories underestimate the
dcflcctioms  as WCII as the stresses and overmtimate  the phase velocity of the propagating waves. The error
associated with the calculation grows significantly with the increase in plate thickness or in the frequency.
Hence, for dynamic analysis of high values of thickness times frequency the classical plate theories are
inadequate for the anal ysis. Mindlin  and others [7] proposcxj ~ improved approximation using the first order
shear deformation theory and retaining the transverse shear and rotary inertia of the plate elements. Based
on this theoretical approach the dispersion curves of the fist an~isymnwwic  mode can be approximated very
closely to the exact solutions [8]. According to this theory, the displacement components are assumed to be
of the form

% = Ulo(xl, X*,  f )  +  x~v~(~l> X2> o

U2
=  

U;(xl, X2, O + X342(4> X2, O (lo)

U3 = u30(x, , X2, ?)

where Uol, Uoz and u“~ are the displacement components of a point in the nlid-pkmc,  and I/Jl and $Z are the
rotations of a line element, originally perpendicular to the longitudinal plane about the Xz and xl axes,
respectively. However, based  on this assumption, the lowest synunetnic  modes are nondispersive and are the
same as the results from the classical plate. This is the result of ignoring that U1 and U2 are even functions of
X3, and us is an odd function of X3 for the symmetric mode (i3g. 1 a). In order to obtain a high order
approximate symmetric mode dispersion curve, a term X3$3 is included in the out of plane displacement U3.

14, = Lq”(xlj X2$ t )

rJ2 =  U;(x,> X2 , t)

1(2 =  X.4.( X,, x,, o

(11)
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. . Hence  the governing equation for the SymIUWiC mode can be written as

(32
(A12+A55)~

1 2

A~
12 axl

az
(A12+A55)-

2

A a2—+A’~
55 dx; 22 ax;

A d
23~

Assume plane wave solutions as follows

O  i(klx,  +  k~2 - W )
Ulo= u, e

O i(k, x, + k2x2 - uI)
u:= u2e

4J3= ye
i(k,x,  + k#2  - @

A23dx2

~ _a: ,D a2.—
55 ax: 44 ax:+

(12)

.

(13)

where k,, ~ and k3 represent the wavenwnbcrs  along the xl, X2 and X3 directiom, respectively, and m is the
circular frequency. Hence, the dispersion equal ion can be derived from the following eigenvalue solution:

-(A#:+A55k;)+lp2 ‘(A,~+A55)k,k2

-(A12+A55)k1k2 -(A55k: +A22k;)  +@2

iA23k2

iA

iA

D55k; -tD44

)

(14)

(15)

where nl = cos #1 and n2 = sin q5; ~ is the wave propagating angle, and k, = dV nl, k2 = u IV n2, V is the
phase  velocity. AtiBti and Djj are commonly used the generalized elastic parameters for composite laminate.
If the laminate is a transversely isotropic material, then from

II = pH, 13 = p}13/12

All = C1lH, A12 = C12H, A,2 = C22H, A55 = C55H, ,

D55 = C55]3/p,  D4 4  =  C44z3/fl, C44 = (C22-C23)/Z

the approximated dispersion equation can be expressed as

[(-c~zc55  +  cl *czzc55)r~~ (-2c~zc~z  +  c1 ~c~z + 2c~zc~~  -

2C12C23C55)H1 n2  

22  2  ‘(c2~c55 -  
c2:c55)n;

+[(C:2 -cl ,C22 -c22c55)n,2+(-c:2 + C:3 -c22c55)n;  ]pv2 + C2

When at the limit OH + O this equation is the same as cxluations (4). Note that high order approximations
Such as

Ml
=  

241 (xl, Xy f) +  x3q, (x]> X2> ~)
(17)

u. = IJ-O(Y  Y.. t) + X.2m. (Y I-.. t). u. = Y.llr. (r ~.. ;

‘“ r-

(16)
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can lead to more accurate results but they will increase the complexity of the dispersion equations.

F

The measured wave velocity can be either the phase or the group velocity depending on the expcriiental  set
and the value of the two maybe very different, particularly in composite materials. The group velocity V.
can be calculated from the characterist ic exjuation  of the phase velocity by

v=-=e iwav

.

EXPERIMENTAL

The experiment? consists of a contact pitch catch arrangement, where the pulse source is induced by
breaking a pencil lead on the surface of the test composite. Three identical receiving transducers are placed
in contact with the composite kiminate  along one line that defiles  the angle of propagation and spaced at a
distance of 25 mn~,apart:  The transducers are broadband type with 5 MHZ center frequency (Digital Waves,
Model B 1000). For data acquisition{’l%aclure  Wave Detector (Digital Waves, F4000)  with four signal
conditioning modules were used. Each of the transducers was connected to a wklcband  preamplifier through
a signal conditioning module and the signals wme.digitize  and wcorder  at a rate of 3.125 MHZ to 25 MHZ.
A schematic view of the cxpcrimentfd setup is shown in Fig. 3.

The use of the pencil  lead breaking method as the source. of signals was chosen since it forms signals with a
low frequency broadband spectra at the range of 50 to 100 kllz. The data for each signal was transferred to
a personal computer for analysis and measurement were made along dlffcrent  dimtions
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igure 3, A schcmat  ic descript  ion of the
experimental setup.
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with the fibers in 15° intervals from 0“ to 90°. The transducers were placed along the propagation direction
with distance 25 mm 50 mm, and 75 mm from the source. At the various directions  of the transducers
placement, the group velocity was dctcrmincd  from the time-of-flight measurement using the time.,anival  of
the first received signal.

A [0]1~ 12 x 12 CInz unidirectional AS4/3502  (Hercules) graphitciepoxy larnkate was used in the
experiment. The laminate was produced using standard hot-press curing technique leading to a laminate
thickness of 3.175 mm. For the inversion of c,, and C,z, the material density of p =1.56 g/cm3 was USCXI and
the matrix dominated material constants Czz, Czj, and C3J were predetermined using the inversion tmktique
that is described in Ref. [1] as .

~ =15.6, ~, =7.89, C,5 =5.00 (GPa)

RESULTS AND CONCLUDING REMARKS

Dispersion curves for the exact and approximate solution of the symmeiric  mode are shown in
Figure 4. This Figure’is showing the phase velocity of wave propagation in a uliidircctional  graphite/epoxy
along 45° with the fibers. It can bc seen that the shear deformation approximate solution agrees with the
exact solutions for the frequency times the thicknc,sst~s  below 0.7 MHZ-mm. Further, this approximation
allows the calculation of modes that can not be obtained using the classical plate theory.

The mcawmd and calculated group yclocity for wave prclpagation along the 0’ to 90’ with the fibers
,are present cd in Fig. 5. The elastic constants c1 ~, Clz were det ennincd  by inversion of the measured group
velocity and they are:

Cll =155.01, c,, =6.44, (GPa)

It can bc seen that the calculated curves fit the experimental data quite WC1l.  However, it is known that the
group velocity of the Extensional mode in this frequency range may not be sensitive to some of the elastic
constants. In order to characterize the material constants from the measured group velocity, a pammctric
study was carried out and ~are,@-cscntcd  in Fig. 6. From this F@re, onc can easil y see that c1, has the
strongest effect on the group veloci(y  curve near th$ 0“ with ~-axis  and decrc,ming  toward zero at about 45°.
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